Windows Kernel - Shellcoding : Token Stealing

DEGAIL Dylan'

1Major in Cybersecurity, School of Computer Science, ENSEEIHT, France

dylan.degail @etu.toulouse-inp.fr

Abstract -

This paper shows the different steps for the creation of a
Windows kernel challenge. The building of the challenge is
divided into the creation of the architecture, the client ap-
plication set-up to communicate with the vulnerable driver
and the conditions for the shellcode development. The player
receives the details connection to start the challenge and tries
to interact with the client application and create a shellcode
that requires specific conditions. The core of the challenge
is to develop a perfect shellcode to perform a privilege esca-
lation and capture the flag. This challenge is to push people
to learn more about how the Windows kernel works and how
the communications operate between the userland and the
kerneland through drivers.

Keywords -
Windows; Kernel; Kerneland; Userland; Driver; Token;
Shellcoding; Permissions; IOCTLS

1 Introduction

This document will treat the different steps to set up this
challenge about Windows driver kernel exploitation.

Firstly, to create this challenge, comprehending this
complex world and training on an existing challenge were
necessary steps. This was a crucial phase to be able to
develop my challenge, especially when you want to create
a variant.

Secondly, I will start with how I created the architecture
and what tools I choosed to set up the environment.

Thirdly, I will explain the development of the client
application and how the player will communicate with it.

Next, the shellcode’s specificities will be developed to
show how the player can create it to solve the challenge.

Finally, I will conclude with how the experience was.

2 Account of my work

In this part, the account of my work during the project
will be divided into different parts.
2.1 Understand and preparation

Firstly, the main work was to understand how a kernel
driver works on Windows and how a client application

communicates with this driver through input/output con-
trols (IOCTLS). These controls allow a userland program
to communicate with the kernel driver. I learned the first
pieces of knowledge I needed to know through the resolu-
tion of a Root-Me challenge [1]].

Moreover, this challenge presented a method for privi-
lege escalation by stealing the token of the SYSTEM pro-
cess [2].

So, the first part of the challenge creation was to un-
derstand this complex world around the Windows kernel,
how communications work, and an exploitation method to
achieve a privilege escalation.

2.2 Architecture and tools

To set up the challenge, I used a Docker container be-
cause it’s easy to deploy. I needed something to virtualize
a Windows and therefore QEMU was a good choice. In
fact, to avoid a blue screen of death (BSOD), a level 2 vir-
tualization was crucial to emulate a different kernel from
the host.

A Windows 10 64-bit version 10.0.19045.4046 was
specifically selected for this challenge.

After that, [registered and started the vulnerable driver
on Windows with the OSR Loader Driver tool.

To facilitate the player, I also installed CYGWIN which
is a toolbox to obtain a Linux-like environment on Win-
dows.

Moreover, this tool gave me freedom on the bash shell
I will give to the player to solve the challenge.

Finally, I have configured an SSH (Secure SHell) service
to allow the player interacts with this environment through
an SSH connection.

2.3 Development of the client application and com-
munications

The core of the challenge creation is to have a client
application that gives a way for the player to communicate
with the vulnerable kernel driver. Additionally, this is one
of the chains I can play with (also the shellcoding part) to
create a difficult challenge by modeling it in my way.

So, to create a distinct challenge from the Root-Me one,
I built a client application that took in argument an [IOCTL
and optionally a shellcode as input.

mailto:dylan.degail@etu.toulouse-inp.fr

Indeed, I was restricted by the IOCTLS the driver gave
me because of reusing the driver of the Root-Me chal-
lenge. But, it was enough for the challenge. I had only the
ability to allocate kernel memory space, copy data from
the input of the client application to the allocated memory,
and execute it afterward.

In this way, I can play with the shellcode that the player
can give me to increase the difficulty of the challenge. The
details will be in the next part.

To achieve this, the client application is developed in
C++ and compiled with Visual Studio. After that, It was
added to the path of the CYGWIN environment to let the
player interact with it.

2.4 Shellcode specificities

I will finish the account of my work with the creation of
the specificities of the shellcode.

To start, to avoid copy-pasting of existing shellcodes
about this exploitation, I added a size limit for the shell-
code. Consequently, the player has to create a shellcode
for the specific Windows version which is used for the
challenge. He can check on websites, like the Vergilius
project [3]], which offsets he needs to get the ' EPROCESS
structure and so the token field.

To add difficulties, I created a sanitizer to bypass some
byte patterns such as using the SYSTEM pid to steal a
system-level token or using the default path to access the
_EPROCESS structure of the current process.

To do it, I added some regex (regular expressions) rules
to detect a sequence of specific bytes. It is applied when
the client application gets the shellcode in input. If the
sanitizer detects aimed patterns, I reject the shellcode and
it will not be copied to the allocated memory space.

These specificities were a good way to push the player
to have a complete understanding of the challenge.

3 Conclusion

To conclude about this challenge’s creation, it was a
pleasing experience to learn new skills in Windows kernel
driver. Even though it was interesting, I had some diffi-
culties with the solving of the challenge. I had to ask help
from people who already resolved the challenge to give
me some hints.

Moreover, the architecture was quite consequent to set-
up, so a lot of time was lost to prepare it well.

One possible improvement for this challenge would be
to create my own “vulnerable” driver. Indeed, because of
the short time and the complex task, I preferred to take the
one from the Root-Me challenge.

Finally, to start to solve the challenge, the player needs
to use the connection details. They can now try their best
to solve it.

References

(1]

(2]

(3]

Root-Me Windows Kernel Challenge. https :
/ / www . root - me . org / fr / Challenges /
Programmation/WinKern- x64 - shellcoding-
vol - de - token, Good challenge about vulnerable
Windows kernel driver to understand how the Win-
dows kernel works and how to communicate with
kernel driver through IOCTLS.

Starting with Windows Kernel Exploitation — part
3 — stealing the Access Token. https://hshrzd.
wordpress.com/2017/06/22/starting-with-
windows - kernel - exploitation - part - 3 -
stealing- the-access-token/, Method to per-
form a windows kernel exploitation by stealing the
access token to a high-level permissions process.

Vergilius project. https : / / www
vergiliusproject . com/, This project pro-
vides a collection of Microsoft Windows kernel
structures, unions and enumerations.

https://www.root-me.org/fr/Challenges/Programmation/WinKern-x64-shellcoding-vol-de-token
https://www.root-me.org/fr/Challenges/Programmation/WinKern-x64-shellcoding-vol-de-token
https://www.root-me.org/fr/Challenges/Programmation/WinKern-x64-shellcoding-vol-de-token
https://www.root-me.org/fr/Challenges/Programmation/WinKern-x64-shellcoding-vol-de-token
https://hshrzd.wordpress.com/2017/06/22/starting-with-windows-kernel-exploitation-part-3-stealing-the-access-token/
https://hshrzd.wordpress.com/2017/06/22/starting-with-windows-kernel-exploitation-part-3-stealing-the-access-token/
https://hshrzd.wordpress.com/2017/06/22/starting-with-windows-kernel-exploitation-part-3-stealing-the-access-token/
https://hshrzd.wordpress.com/2017/06/22/starting-with-windows-kernel-exploitation-part-3-stealing-the-access-token/
https://www.vergiliusproject.com/
https://www.vergiliusproject.com/

	Introduction
	Account of my work
	Understand and preparation
	Architecture and tools
	Development of the client application and communications
	Shellcode specificities

	Conclusion

